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Abstract

Lagrangian methods have been used recently to reconstruct temperature profiles for relatively high Prandtl number, Pr, fluids (up

to Pr ¼ 2400) in direct numerical simulations (DNS) of turbulent channel flow. The basic concept is that a heated surface is formed

by an infinite number of continuous sources of heat. For example, the behavior of a heated plane can be synthesized by the behavior

of an infinite number of continuous sources of heat that cover the plane. The building block for such a reconstruction is the behavior

of a single instantaneous heat source located at the wall. The present work studies the behavior of such sources in turbulent channel

flow. The trajectories of heat markers are monitored in space and time as they move in a hydrodynamic field created by a DNS. The

fluids span several orders of magnitude of Pr (or Sc), Pr ¼ 0:1, 1, 10, 100, 200, 500, 2400, 7000, 15 000, 50 000, (liquid metals, gases,

liquids, lubricants and electrochemical fluids). The effects of Pr in the evolution of the marker cloud are examined and quantified.

The marker cloud is found to evolve in three stages, two of which are Pr dependent. � 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

A basic problem in developing a theory for turbulent
transport of mass or heat from a wall is to calculate
statistical properties of the scalar field from statistical
properties of the velocity field. Central concerns are the
prediction of the spatial variation of eddy transport
coefficients, the effect of molecular Prandtl number, Pr,
on turbulent transport and the effect of boundary con-
dition changes on the transport properties. The classical
approach has been to use some form of the Reynolds
analogy to relate turbulent transport of a scalar to tur-
bulent transport of momentum (the Reynolds stress).
Even though the use of averaged equations or models
based on the analogy is standard engineering practice, it
might lead to inaccuracies (Churchill, 1996, 1997).

Direct numerical simulations (DNS) of turbulent
flows and of scalar turbulent transport offer the op-
portunity to address such issues and to provide a
sounder theoretical understanding than is offered by the
analogy. These simulations are based on first principles

and they are equivalent to extremely accurate experi-
ments (Moin and Mahesh, 1998; Kasagi and Shikazono,
1995). Computational requirements, however, have
limited DNS applications to a narrow range of fluids
with molecular Pr or Schmidt number, Sc, between
0.025 and 10 (Kim and Moin, 1989; Lyons et al., 1991a;
Kasagi et al., 1992; Kasagi and Shikazono, 1995; Ka-
wamura et al., 1998; Kawamura et al., 1999; Na et al.,
1999; Na and Hanratty, 2000; Tiselj et al., 2001). This
limitation arises because, in order to resolve all the
scales of motion and temperature, the number of grid
points has to be analogous to Pr3=2Re9=4. An increase of
Pr by one order of magnitude means an increase of the
number of grid points by about 30 times. In addition,
each simulation describes a specific configuration (iso-
thermal walls or constant heat flux walls). Calmet and
Magnaudet (1997) used Large Eddy Simulation to study
turbulent mass transfer for Sc in the range 16 Sc6 200.
Using Lagrangian methods, Papavassiliou and Hanratty
(1997) reconstructed temperature profiles for higher
Pr by orders of magnitude (up to Pr ¼ 2400) and dif-
ferent problem configurations without increasing
the number of grid points. The behavior of a heated
plane was synthesized by the behavior of an infinite
number of continuous sources of heat that covered the
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plate (Papavassiliou and Hanratty, 1995). This tech-
nique, which we will refer to as the Lagrangian scalar
tracking (LST) method, has also been implemented
successfully by Ponoth and McLaughlin (2000) for the
simulation of mass transfer in low Re fluids and non-
Cartesian geometries for bubble dissolution in the
presence of surfactants.

In the Lagrangian framework, contrary to the Eule-
rian framework, the system of reference moves with the
fluid particles, or the heat or mass markers in the case of
scalar transport. The Lagrangian approach is the natu-
ral mechanism of transport and it can provide valuable
physical insights. Another advantage of LST is that a
single computation can be used to reconstruct the
behavior in different problem configurations; e.g., iso-
thermal and isoflux walls, step change in wall tempera-
ture or heat flux, continuous and instantaneous line
source behavior.

The building block for such a reconstruction is the
behavior of a scalar line source located at the wall. The
present work studies the behavior of such sources in
turbulent channel flow. A tracking algorithm is used to
monitor the trajectories of particles in space and time as
they move in a hydrodynamic field created by a DNS.
The fluids span several orders of magnitude of Pr (or
Sc), Pr ¼ 0:1, 1, 10, 100, 200, 500, 2400, 7000, 15 000,
50 000, (liquid metals, gases, liquids, lubricants and
electrochemical fluids). The focus of this paper is the
description of the behavior of an instantaneous line
source with an emphasis on the higher Pr fluids.

2. Background

Einstein (1905) developed a relation that describes
dispersion of particles in terms of the mean-squared
displacement from the source in the x-direction:

dX 2=dt ¼ 2D; ð1Þ
where D is the molecular diffusivity. Taylor (1921) de-
veloped a similar relation for the rate of dispersion of
fluid particles from a point source in homogeneous,
isotropic turbulence:

dX 2

dt
¼ 2u2

Z t

0

RL sð Þds; ð2Þ

where u2 is the mean-square of the x-component of the
velocity of fluid particles and RL is the Lagrangian
correlation coefficient. An important implication of
Taylor’s equation is that the history of the particle
motion affects the rate of dispersion through RL. At
small times, the value of the Lagrangian correlation
coefficient is close to one, and the dispersion increases
with time to the second power. At large times it is
RL ¼ 0, and the dispersion changes linearly with time.

Dispersion of heat or mass markers introduces an
additional complication, since the markers can move off
a fluid particle as a result of molecular diffusion. Saff-
man (1960) developed a relation for dispersion in this
case by defining a material autocorrelation function,
which correlates fluid velocity components along the
trajectories of markers instead of fluid particles. Corrsin

Nomenclature

b Batchelor’s constant
D molecular diffusivity
h half channel height
P1 probability density function for a puff of heat
P2 probability density function for a plume of

heat
Pr Prandtl number, Pr ¼ m=a
RL Lagrangian correlation coefficient
RViVj material correlation coefficient for marker

velocities
RV m

i V m
j

material correlation coefficient for marker–
marker velocities

Re Reynolds number
Sc Schmidt number, Sc ¼ m=D
T temperature
t time
X ðx0; tÞ position vector at time t for a marker re-

leased at x0

X, Y, Z marker position in respective direction
x, y, z streamwise, normal and spanwise coordinates

x0 marker position at time zero
U Eulerian velocity vector
u, v, w streamwise, normal and spanwise velocities
u� friction velocity
V Lagrangian velocity vector of a marker
V mean marker cloud velocity

Greeks
a thermal diffusivity
Dt time step
m kinematic viscosity of the fluid
r standard deviation of the random molecular

jump of heat markers
s time
sL
i Lagrangian timescale in the i-direction

s95 timescale for 95% dispersion due to molecu-
lar diffusion effects

szone II, szone III timescale characteristic of the stages
of puff development

Superscripts
ðÞ0 fluctuations
ðÞþ quantity in viscous wall units

162 D.V. Papavassiliou / Int. J. Heat and Fluid Flow 23 (2002) 161–172



(1953, 1959) studied line source diffusion in a homoge-
neous shear flow with a constant mean velocity gradient.
The Lagrangian dispersion in the direction of the flow,
X, was found to be different from the dispersion in the
direction of the velocity gradient, Y, which is described
by Taylor’s analysis. It is

Y ¼
Z t

0

v t1ð Þdt1 ð3aÞ

and

X ¼
Z t

0

dU
dy

Y t1ð Þ
�

þ u t1ð Þ
�
dt1; ð3bÞ

where u, v are the particle velocities in the direction of
the flow and in the direction of the velocity gradient,
respectively. For large times the dispersion becomes
(Corrsin, 1959)

Y 2 ¼ 2v2sL
y t ð4aÞ

and

X 2 ¼ 2

3

dU
dy

� �2

v2sL
y t

3; ð4bÞ

where sL
y is the Lagrangian timescale in the y-direction.

Hanratty (1956) used Taylor’s theory to describe the
transfer of heat in a homogeneous isotropic flow be-
tween a hot and a cold wall. An infinite number of line
sources of heat along one wall was used to describe the
hot plane and an infinite number of line sinks of heat
along the other wall described the behavior of the cold
plane.

The Lagrangian approach has been used to interpret
observations in the Eulerian framework with funda-
mental arguments: (a) the variation of the eddy con-
ductivity with the distance from the wall has been
associated with the time dependency of turbulent diffu-
sion, specifically the time that the heat markers have
been in the flow field (Eckelman and Hanratty, 1972),
and (b) temperature gradients close to the wall are the
result of the behavior of thermal markers that have been
in the field for small periods of time.

The behavior of individual point and line sources in
the turbulent field is needed to apply Hanratty’s La-
grangian approach. Batchelor (1964) developed a theory
for the prediction of the statistical behavior of a source
in a turbulent boundary layer. He used similarity to
argue that the Lagrangian velocity within the constant
stress region depends only on the friction velocity u� and
time so that

Vy �
dY
dt

¼ bu�; ð5Þ

where b is an absolute constant. Batchelor estimated the
value of b to be 0.2 (based on experimental results by
Townsend) and Shlien and Corrsin (1976) measured
b ¼ 0:39 for the case of Pr ¼ 0:7.

Laboratory measurements for turbulent dispersion
have been reported for the case of continuous sources of
a passive scalar (Poreh and Cermak, 1964; Shlien and
Corrsin, 1976; Fackrell and Robins, 1982; Raupach and
Legg, 1983; Incropera et al., 1986). However, none of
these provide space–time correlations for the behavior
of single instantaneous sources. Poreh and Cermak
(1964) measured the dispersion of ammonia gas from a
continuous line source located at the wall of a turbulent
boundary layer. They distinguished four zones of dis-
persion: (a) the initial zone, in which almost all the
contaminant is near the wall; (b) the intermediate zone,
in which a plume is diffusing submerged in the boundary
layer; (c) the transition zone, in which the edge of the
turbulent boundary layer behaves as a ‘‘lid’’ and allows
dispersion through it only with molecular diffusion; and
(d) the final zone, in which all the contaminant is con-
tained between the wall and the edge of the boundary
layer. Shlien and Corrsin (1976) examined turbulent
dispersion of heat in a wind tunnel, downstream from a
heated wire. Qualitative interpretation of their results
confirmed the four stages observed with the mass transfer
results of Poreh and Cermak and showed good quanti-
tative agreement, specifically in the intermediate stage.

3. Methodology

The present work is focused on the Lagrangian be-
havior of sources in an inhomogeneous turbulent field.
The velocity field for a Newtonian and incompressible
fluid is calculated using a DNS of fully developed tur-
bulent flow in a channel, which was developed by Lyons
et al. (1991b). The Reynolds number, Re, defined with
the centerline mean velocity and half-height of the
channel, h, is 2660. The simulation is done on a 128�
65 � 128 grid in (x, y, z). The dimensions of the com-
putational box are (4ph, 2h, 2ph), with h ¼ 150 in wall
units. The flow is assumed to be periodic in the stream-
wise and spanwise directions with periodicity lengths
equal to the dimensions of the box in the respective
directions.

A tracking algorithm (Kontomaris et al., 1993) is
used to monitor the trajectories of particles in space and
time as they move in the hydrodynamic field created by
the DNS. The basic assumption is that a heat marker
at each time has the velocity of the fluid particle that
carries it, V ðx0; tÞ ¼ U ½X ðx0; tÞ; t
, where V ðx0; tÞ is the
Lagrangian velocity of a marker that is released at
location x0 and U is the Eulerian velocity. The equation
of particle motion then is

V x0; tð Þ ¼ oX x0; tð Þ
ot

: ð6Þ

The motion of the heat markers is decomposed into
a convection part and a molecular diffusion part. The
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convective part can be calculated from the fluid velocity
at the particle position (using Eq. 6 and the velocity
from the DNS). The effect of molecular diffusion follows
from Einstein’s theory for Brownian motion. It is sim-
ulated by imposing a 3D random walk on the particle
motion, which is added on to the convective part of the
motion after each time step, Dt, and it takes values from
a Gaussian distribution with zero mean and standard
deviation r ¼

ffiffiffiffiffiffiffiffiffiffiffi
2DtD

p
. Using viscous wall units, the

standard deviation becomes rþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dtþ=Pr

p
. This is the

mechanism that incorporates the effect of the fluid Sc or
Pr in the numerical process. The time step for the cal-
culations of the hydrodynamic field and the Lagrangian
tracking was Dtþ ¼ 0:25 in wall units. The choice of this
time step for the Lagrangian calculations ensured that a
marker has a very small probability to jump more than
one hydrodynamic grid cell in one time step, rþ < Dyþ,
in all Pr considered in this work. It is our experience that
a smaller time step has to be used at the initial stages of
marker release when working with Pr smaller than 0.1.
Note that the limitations on Pr that restrict Eulerian
simulations, as discussed in the introduction, do not
restrict LST. The presence of these markers does not
affect the flow field, so the behavior of a passive scalar is
simulated.

4. Results

A total of 16 129 markers were released instanta-
neously from a uniform rectangular grid that covered
the bottom wall of the channel in each of three runs.
Run A tracked markers with Pr ¼ 0:1, 1, 10 and 100 up
to time tþ ¼ 2750, run B tracked markers with Pr ¼ 0:7,
1, 3, 500 and 2400 up to time tþ ¼ 2750, and run C
tracked markers with Pr ¼ 200, 2400, 7000, 15 000 and
50 000 up to time tþ ¼ 13000.

The initial positions of the markers were on a
127 � 127 grid, so that a single marker was released
from the middle of each edge of the hydrodynamic grid.
The choice to release markers at one grid spacing apart
was made in order to avoid the release of several
markers from points in the flow that are strongly cor-
related. Calculations of the mean cloud position and of
the root mean square of the marker positions around the
mean using only every other marker (8065 total mark-
ers) have shown a difference of less than 2% in every
case. Recent runs conducted in our laboratory (to be
presented elsewhere), with one order of magnitude more
markers in the flow, have shown a similar behavior. In
general, the best criterion for determining whether en-
ough markers have been used would be to calculate the
statistical behavior of the cloud using a portion of them
and then compare the results with the case of the total
number of markers.

Fig. 1 presents the mean trajectories, X ðx0; tÞ � x0, of
the marker cloud of run C with time in the streamwise
and normal directions. Physically, this is the trajectory
of the centroid of a cloud of markers released from an
instantaneous line source located at the wall of the
channel. At large times, it is expected that the cloud will
be uniformly distributed over the width of the channel
and the centroid will be at y ¼ h ¼ 150. Lower Pr
markers get away from the viscous wall region and into
the region of higher mean velocity sooner than high Pr
markers, because they move out of the wall region due
to larger molecular jumps. Therefore, they advance
much farther in the streamwise direction, as seen in Fig.
1(a). This indicates that entry effects in a channel with
higher Pr fluid are felt for a much longer time. The
density of the cloud of the markers is represented by the
probability, P1ðx; y; z; tjt0; x0Þ, of a marker to be at a
location (x; y; z) in the flow field at time t, given that it
was released at location x0 at time t0. Fig. 2 presents
the standard deviation of the probability of the marker

Fig. 1. Mean marker position for high Pr fluids (run C): (a) streamwise

direction; (b) vertical direction.
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location with time in the streamwise and the normal
directions. In the streamwise direction, the standard
deviation increases with Pr. As the Pr increases, a larger
percentage of markers stay close to the wall for longer
times. The markers that get in the outer region of the
flow travel downstream with velocities close to the mean
flow velocity. The conceptual picture that emerges for
high Pr sources is that the front of the cloud moves with
the mean flow velocity, while the back of the cloud stays
in the viscous wall layer resulting: (a) in a cloud that is
stretched downstream, and (b) in a high variance of the
marker position in the streamwise direction. The stan-
dard deviation of the cloud position in the normal di-
rection is expected to be that for a uniform distribution
that extends throughout the width of the channel. This
prediction is confirmed with the measurements pre-
sented in Fig. 2(b), where the normal direction standard
deviation is shown to tend to the value of ð3002=12Þ1=2 ¼

86:6 at large times. A difference from this value, as seen
for Pr ¼ 50000, is an indication that the cloud has not
developed to the point of uniformly covering the width
of the channel.

The mean cloud velocities in the streamwise and in
the normal directions are shown in Figs. 3(a) and (b),
respectively. The streamwise velocity reaches the value
of the bulk mean velocity of the flow field (close to 15 in
wall units), as expected. The normal velocity of the
cloud exhibits a maximum, as the cloud moves away
from the wall on average, and then returns to zero, as
the cloud covers the channel width uniformly.

The value of the constant b introduced by Batchelor
(1964) is presented in Fig. 4 as a function of the Pr. The
value was estimated using Eq. (5) at the maximum value
of the normal Lagrangian velocity. After that point, the
wall of the channel opposite to the source wall affects the
evolution of the marker cloud. As presented in Fig. 4,
the value of b is a function of Pr:

Fig. 2. Root mean square of the marker position relative to the cloud

centroid for high Pr fluids (run C): (a) streamwise direction; (b) vertical

direction.

Fig. 3. Mean marker velocity for different Pr fluids: (a) streamwise

direction; (b) vertical direction.
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b ¼ 0:221Pr�0:21: ð7Þ
At very high Pr the value of b goes to zero (Pr ! 1 is

the case of fluid particles, for which the Lagrangian
normal velocity goes to zero), and at Pr ¼ 0:7 (air at
room temperature) the value of b goes to 0.238, which is
close to the value of 0.2 predicted by Batchelor. Fig. 4
shows that the correlation expressed in Eq. (7) appears
to work better for points with Pr < 10000. The physical
reason is that, when the normal Lagrangian velocity of
the cloud reaches its maximum, the mean cloud position
is below the logarithmic region for the Eulerian velocity
field. The similarity that applies in this case is the simi-
larity of the viscous wall sublayer, not the similarity of
the constant stress region, which applies to the cases of
the lower Pr. In general, the channel flow configuration,
which is employed in our numerical experiments, does
not provide for an extended constant stress region.
However, the dependence of Batchelor’s constant on Pr
is evident.

Fig. 5 shows the standard deviation of the probability
of the markers that describes the streamwise and normal

velocity, ðVi � V iÞ2
1=2

, for runs A and C. There is a
maximum for the streamwise velocity, which corre-
sponds to the instant at which a cloud is exposed to
drastically different mean velocities (a large part of it in
the viscous layer with low mean velocity, and a part of it
in the outer region with high mean velocity), and then a
constant value, which corresponds to the final stage at
which the cloud is uniformly distributed in the channel.
At large times, it is expected that the standard deviation
of the Lagrangian normal velocity will tend to the value
of the average turbulent intensity of the Eulerian normal
velocity across the channel. A similar observation for
the streamwise velocity, however, should not be ex-
pected. In fact, the values for the streamwise velocity at
large times are higher than the average across the

channel of the Eulerian streamwise turbulent intensity.
This is because the Lagrangian velocity fluctuations are
calculated with respect to the mean Lagrangian velocity
of the cloud, which is the Eulerian bulk velocity of the
fluid in the streamwise direction, and not relative to
the ensemble average velocity of the flow field, as are the
Eulerian velocity fluctuations. Fig. 5(b) also shows that
after some time the standard deviation of the normal
velocity for all Pr clouds for run A or run C follow
similar patterns (recall that all cases for run A follow the
same hydrodynamic field and all cases for run C follow
another hydrodynamic field). This observation indicates
that convection dominates transport when the markers
leave the wall region independent of the Pr. Considering
the fact that Eulerian mean temperature profiles for the
case of a heated wall result from the behavior of an
infinite number of wall sources, it appears that the dif-
ferences between these profiles for different Pr are the

Fig. 4. Batchelor’s constant as a function of the fluid Pr.

Fig. 5. Root mean square of the marker velocity relative to the cloud

centroid for different Pr fluids: (a) streamwise direction; (b) vertical

direction.
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result of the fact that higher Pr markers stay longer
in the viscous wall region. However, as soon as the
markers arrive in the outer region, all Pr fluids behave in
a similar way and turbulence mixes the markers well.

The cloud that results from an instantaneous source
of a scalar is usually called a puff and the cloud that
results from a continuous source of a scalar is usually
called a plume. Fig. 6 presents contours of the proba-
bility density function P1 for Pr ¼ 100 markers at dif-
ferent times. The physical interpretation of these
contours is that they represent temperature or concen-
tration contours resulting from a puff released from a
source instantaneously (Saffman, 1960). In this partic-

ular case of Pr ¼ 100, three zones are observed that are
reminiscent of the zones described by Poreh and Cermak
(1964) for the case of plumes. Zone I, which corresponds
to small times (see Fig. 6(a)), is characterized by the
cloud staying together in a rather compact form close to
the wall. In the second zone (zone II, shown in Figs. 6(b)
and (c)), markers are leaking out of the compact cloud
and into the outer region of the flow field where they get
swept by the larger turbulence eddies and move with the
mean flow velocity. The total cloud seems to be sepa-
rated in two parts, the dissolving cloud in the viscous
wall region and the markers that have leaked out of it
and are forming a second group downstream from the

Fig. 6. Snapshots of a puff of markers with Pr ¼ 100 at different times from their release: (a) tþ ¼ 250 and tþ ¼ 500; (b) tþ ¼ 1500; (c) tþ ¼ 2000. The

bottom wall of the channel is at y ¼ �150 and the top wall at y ¼ 150.
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original cloud. In the third and final zone (zone III) the
original tight cloud is dissolved into the outer flow. Our
results show that this distinction in three zones is typical
in the evolution of the puffs, especially for Pr larger than
one. Contours of the puffs at other Pr (not presented
here) show that zone II becomes more pronounced as Pr
increases. The existence of this zone means that the in-
formation given by the mean particle position does not
provide a complete picture for the puffs. The simple
picture that the markers always form a cloud that is
denser in its middle is not true for zone II. The cloud
mean position is in fact located in a low concentration
region between the two denser regions formed by the
original cloud and the markers that have leaked out of
it. This observation also indicates that the markers that
reach the center of the channel in the case of plumes are
not necessarily the ones that have been in the flow for a
long time. At high Pr, it is quite possible that a particle
that has been in the flow field for a long time stays in the
wall region. There seems to be a filtering effect that al-
lows fewer particles to leak away from the original puff
as Pr increases. This observation is consistent with
previous observations (Campbell and Hanratty, 1983;
Hanratty and Vassiliadou, 1988; Calmet and Magnau-
det, 1997) that different parts of the frequency spectrum
of the velocity component normal to the wall, v, control
turbulent transfer at different Pr. Experimental and
numerical work in these papers showed that, as Pr in-
creases, the frequencies of v fluctuations that contribute
to turbulent transport from the wall decrease. The La-
grangian interpretation of the filtering effect, that the
wall has on the turbulent structures contributing to
transport, is that for higher Pr zone I is more extended.
As Pr increases, the cloud of markers stays very close to
the wall and only large eddy structures that reach into
the viscous wall region from outside (those with low
frequencies) can take markers away and can contribute
to the leaking process that is characteristic of zone II.

Fig. 7 shows contours of the puff concentration at the
same time (tþ ¼ 1000) and different Pr. The Pr ¼ 2400

cloud is in zone II of development, while the higher Pr
clouds are still in zone I. Fig. 7 shows that high Pr
markers stay close to the wall for a long time. This fact
can provide a physical interpretation in a Lagrangian

Fig. 7. Snapshots of a puff of markers at tþ ¼ 1500 from their release with different Pr: Pr ¼ 2400, Pr ¼ 7000, and Pr ¼ 50000. The bottom wall of the

channel is at y ¼ �150 and the top wall at y ¼ 150.

Fig. 8. Logarithmic plot of: (a) the streamwise cloud position; (b) the

streamwise velocity.
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sense for the shape of the mean temperature profile in
the case of heat transfer from a wall. The Eulerian mean
temperature presents a steep gradient close to the wall
and then becomes flat away from the wall. The higher
the Pr, the steeper the gradient and the flatter the outer
region. The Eulerian interpretation is that turbulence
has a better chance of mixing the high Pr fluids in the
outer region, since the molecular diffusion is smaller.
Keeping in mind that the mean temperature is affected
by markers that were released from the wall at different
times, it becomes now apparent that the reason for this
behavior is the difficulty that the markers face to leave
the viscous wall region and not the ability of turbulence
to mix. As the Pr increases, the markers stay close to the
wall resulting in steep temperature gradients. Relatively
few get to the outer region resulting in flat temperature
profiles.

Fig. 8 presents the mean cloud position and the mean
cloud velocity as a function of time in logarithmic co-
ordinates. The existence of the three zones of cloud
development is presented in a clearer way than the
qualitative observations in Fig. 6. Zone I, which is
dominated by transfer with molecular means, is char-
acterized by the relations: X / t3=2 and Vx / t1=2. The
transition zone, zone II, is also a logarithmic zone that is
more extended as Pr increases. The final zone, in which
the dominant transport mechanism is turbulent con-
vection, is shown as zone III.

The initial stage of cloud development, zone I, can be
further split in two sub-regimes. The first sub-regime is
identified as the zone that Brownian motion is the

Fig. 9. Comparison of the dispersion of the cloud at the very early

stages of cloud development to the dispersion by Brownian motion

calculated by Einstein’s relation.

Fig. 10. Characteristic times for the evolution of a puff as a function of

Pr.

Fig. 11. Correlation coefficients for: (a) the streamwise; (b) the normal;

(c) the spanwise marker velocities.
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dominant transport mechanism. The time extent of this
sub-regime can be quantified by a comparison of the
rate of dispersion of the cloud in the normal direction,
dY 2=dt, with the rate of dispersion predicted by Ein-
stein’s theory for molecular diffusion (Eq. 1). Fig. 9
presents the comparison between dispersion dominated
by Brownian motion and the measured dispersion at the
early stages of the cloud development. Fig. 10 shows the
values of this timescale when zone I is defined to be 95%
dominated by molecular diffusion, s95, as a function of
Pr. Regression analysis shows that

s95 ¼ 8:34Pr0:38: ð8Þ
The second sub-regime of zone I, which is much

longer than the first sub-regime, is identified as the stage
at which transport is dominated by molecular effects; the
molecular diffusion as well as the molecular viscosity of
the fluid. The extent of this regime depends on the Pr
of the fluid. Fig. 10 also presents the timescale that
defines the end of zone I and the beginning of zone II as
a function of Pr. This timescale is estimated using the
points in Fig. 8(b) at which there is a change of the curve
slope. It is found that

szone II ¼ 27:1Pr0:36: ð9Þ
The end of zone II and the beginning of zone III is

marked in Fig. 8(b) and presented as a function of Pr in
Fig. 10. The correlation for this transition is

szone III ¼ 101:2Pr0:35: ð10Þ
The marker velocity at the end of the dispersion sub-

regime, s95, is used to calculate the marker velocity
correlation functions presented in Fig. 11. The material
correlation is calculated similar to the material correla-
tion defined by Saffman (1960) as

RViVj t; s95ð Þ ¼
V 0
i t � s95ð ÞV 0

j s95ð Þ

V 02
i t � s95ð Þ

� 	1=2

V 02
j s95ð Þ

� 	1=2
: ð11Þ

The overbar denotes ensemble average over the total
number of markers in the flow field and the prime
denotes Lagrangian fluctuations, V 0

i ¼ ViðtÞ � V iðtÞ.
The streamwise–streamwise, RVxVxðt; s95Þ, the normal–
normal, RVyVy ðt; s95Þ, and the spanwise–spanwise,
RVzVzðt; s95Þ, correlations are shown in Figs. 11(a), (b),
and (c), respectively. As Pr increases, the streamwise
velocity correlation increases, which indicates that tur-
bulence takes longer to start mixing the higher Pr cloud.
On the contrary, the normal–normal and spanwise–
spanwise correlations drop to zero very fast for all Pr
fluids. The RVzVzðt; s95Þ figure shows that the correlation
of the marker velocity in the spanwise direction does not
appear to have a periodic increase. This is an indication
that the markers do not align themselves with coherent,
low or high-velocity streaks, which are known to exist
close to the wall. However, this issue needs further in-
vestigation by studying the probability of a marker to be
at a location in the flow field given that this location is
part of a low or a high speed streak at the viscous wall
region.

The behavior of a continuous source located at x0 can
be simulated by integrating the probability density
function that describes the behavior of the puffs in time:

P2 Xð � x0; Y ; tÞ ¼
Z t

t0

P1 Xð � x0; Y ; tjt0; x0Þdt: ð12Þ

Fig. 12 presents contours of this probability density
function for Pr ¼ 7000 and Pr ¼ 50000. Even after 5000
viscous time units, the heat plume stays very close to the
wall at high Pr. Integration of P2 with x would provide
the behavior of a heated plane.

5. Conclusions

The behavior of instantaneous line sources of heat or
mass at the wall of a turbulent channel flow has been

Fig. 12. Snapshots of a plume of high Pr markers at two different times from the initiation of particle release: Pr ¼ 7000 (dashed lines) and

Pr ¼ 50000 (solid lines).
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investigated and has been characterized in this work.
The effect of different Pr in turbulent transport has also
been studied. The range of the fluid molecular Pr ex-
tends from 0.1 to 50 000. The use of LST allows quali-
tative observations as well as quantitative measurements
in these cases. It provides a fundamental physical in-
terpretation of Eulerian phenomena, such as the filtering
effect of the wall to velocity frequencies that contribute
to scalar transport, and the shape of the mean temper-
ature profile for the case of a heated wall.

Three stages in the evolution of a puff were identified:

(i) The molecular diffusion dominated zone, which is
further separated in two sub-regimes. The first sub-
regime depends on the thermal diffusivity of the fluid
and governs the initial development of the thermal
cloud. The second sub-regime depends on both the
diffusivity and the viscosity of the fluid and its extent
is a function of Pr.
(ii) The transition zone, in which markers are leaking
away from the original compact cloud of markers.
This zone is logarithmic and it also depends on Pr.
(iii) The final zone, in which there are no Pr effects
and the marker motion is dominated by turbulent
convection.

In conclusion, understanding the behavior of indi-
vidual heat sources can lead to the understanding of the
macroscopic turbulent heat transport behavior. The
challenge is to model and predict the behavior of such
sources in time and space.
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